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Abstract— Teaching robots novel skills with demonstrations
via human-in-the-loop data collection techniques like kines-
thetic teaching or teleoperation puts a heavy burden on human
supervisors. In contrast to this paradigm, it is often significantly
easier to provide raw, action-free visual data of tasks being
performed. Moreover, this data can even be mined from video
datasets or the web. Ideally, this data can serve to guide robot
learning for new tasks in novel environments, informing both
“what” to do and “how” to do it. A powerful way to encode
both the “what” and the “how” is to infer a well-shaped
reward function for reinforcement learning. The challenge is
determining how to ground visual demonstration inputs into
a well-shaped and informative reward function. We propose a
technique Rank2Reward for learning behaviors from videos of
tasks being performed without access to any low-level states
and actions. We do so by leveraging the videos to learn a
reward function that measures incremental “progress” through
a task by learning how to temporally rank the video frames
in a demonstration. By inferring an appropriate ranking, the
reward function is able to guide reinforcement learning by
indicating when task progress is being made. This ranking
function can be integrated into an adversarial imitation learning
scheme resulting in an algorithm that can learn behaviors
without exploiting the learned reward function. We demonstrate
the effectiveness of Rank2Reward at learning behaviors from
raw video on a number of tabletop manipulation tasks in
both simulations and on a real-world robotic arm. We also
demonstrate how Rank2Reward can be easily extended to be
applicable to web-scale video datasets. Code and videos are
available at https://rank2reward.github.io

I. INTRODUCTION

Robot learning via reinforcement learning (RL) directly in
the real world show the promise of continual improvement,
with minimal modeling assumptions [1]–[5]. However, the
promise of plug-and-play reinforcement learning hides a
significant challenge — where do reward functions come
from? Reward function design is a non-trivial task; rewards
must be unbiased while still guiding exploration toward
optimal behaviors with “dense supervision”. While this may
be possible to provide in certain simulation environments [6],
[7], it is much more challenging in the real world.

A natural strategy for reward function design is data-driven
algorithms such as inverse RL [8], [9] for reward inference.
These methods rely on expert demonstrations to infer reward
functions, learning reward functions that maximize the like-
lihood of demonstrations while being uninformative about
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Fig. 1: Depiction of the problem setting in Rank2Reward - inferring well-
shaped and calibrated reward functions from video demonstrations that
enable effective policy optimization.

other trajectories [10]–[12]. This approach can be powerful
but typically suffers from two significant challenges - (1)
demonstration data in the form of state-action tuples can be
challenging to obtain without expensive techniques such as
kinesthetic teaching or teleoperation, and (2) learned reward
functions may explain the expert data well, but may not be
“well-shaped”, providing no guidance for exploration. For
data-driven reward functions to be a practical alternative to
hand-crafted reward functions, they must both be easy to
provide and make policy optimization easy.

As opposed to expensive forms of demonstrations such
as kinesthetic teaching or teleoperation, a natural and easy-
to-obtain source of interaction data is video observations
of tasks being performed. These are abundantly present in
computer vision datasets [13]–[16]. This data contains both
“what” tasks are interesting in an environment and “how”
to accomplish these tasks. In this work, we show how raw
videos of tasks being performed can serve as supervision for
a simple reward learning method that satisfies both desiderata
above - (1) is easy to provide, and (2) effectively guides
exploration for RL by providing informative shaping.

The key insight that we exploit in this work is that video
demonstrations typically make monotonic progress toward
a goal. Under this assumption, a natural reward function is
simply how much progress has been made along a successful
trajectory. This framing allows us to recast reward function
learning as the problem of learning to order frames within
a video. By predicting an ordering of video frames, we can
infer a notion of progress along a trajectory using techniques
from learning from preferences [17], [18]. Since the progress
along a trajectory is strictly monotonic, the resulting reward
function is well-shaped for policy optimization.

Notably, since the ranking function is trained purely on
expert video data, it cannot meaningfully provide a reward
signal to states and trajectories not covered in the expert
dataset. To remedy this, we show how to formulate policy
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search with learned ranking rewards as a constrained policy
optimization problem in which the policy is constrained
to stay close to the distribution of expert data. We show
how this can be further simplified to a weighted variant
of adversarial imitation learning, alternating between (1)
learning a discriminator to differentiate expert from on-
policy trajectories and (2) policy search using reward as a
combination of the learned ranking function and the learned
discriminator. This results in a simple yet performant algo-
rithm for policy learning from video demonstrations without
actions - rank frames in video demonstrations and use this
ranking to reweight adversarial imitation learning. We show
the efficacy of this learned reward function to guide policy
learning for both tasks in simulation and real-world robotic
manipulation.

II. RELATED WORKS

Our work builds closely on a wide variety of related work,
as we outline below.

Inverse RL: Inverse reinforcement learning (IRL), [8],
[9], [19] aims to infer rewards from demonstrations such that
demonstrations are scored highly, while other trajectories
are scored suboptimally. Various IRL techniques aim to
instantiate this idea using techniques such as max-margin
planning [20], maximum entropy inverse RL [12], [21], [22],
and feature matching [19]. Generative adversarial imitation
learning (GAIL) [10] and similar methods [11], [12], [23],
proposed treating IRL as an adversarial game. A challenge
most IRL techniques face is that while the reward is correct at
optimality [24], [25], the rewards are poorly shaped, offering
no learning signal. We show that a simple ranking based
objective can allow us to easily infer well-shaped rewards.

Imitation from observation: Imitation-from-observation
considers how to learn from high dimensional action-
free demonstrations such as videos [26]. One class of
these imitation-from-observation techniques tries to label
the observation-only dataset with inferred actions from an
inverse dynamics model, and run standard imitation learning
[27]–[29]. Specifically for tasks with human hands, other
methods infer actions using off the shelf hand and object pose
estimation algorithms before applying standard imitation
learning [30]–[32], but these methods require instrumentation
of the environment with calibrated, depth-sensing cameras
and presume known pose detectors. [33], [34] learn video
classifiers and use these as rewards for reinforcement learn-
ing. This can be effective at deciding “what” to do but fails
to provide shaped rewards. Other techniques to learn from
videos include learning representations from video to assign
rewards [35], using temporal contrastive learning [36]–[38],
and regressing onto temporal differences between frames to
provide an exploration bonus reward for RL [39]. While this
can be effective in certain scenarios, these learned distances
are inaccurate out of distribution and are prone to exploita-
tion. As opposed to these methods, Rank2Reward aims
to provide a reward function that is both well-shaped and
calibrated on out-of-distribution states. The closest work
in this line to ours is Time Contrastive Networks (TCN)

[35]. While TCN may learn a useful representation from
contrastive learning across time and viewpoints, this em-
bedding space does not contain any notion of progress
towards achieving a goal, as distance in input space does not
correspond to moving towards or away from the goal, and
relies on performing feature tracking on a specific expert
trajectory which requires temporal alignment. In contrast,
Rank2Reward learns an ordered ranking space which both
encodes progress towards the goal and is agnostic to time
required to reach the state.

Ranking-based approaches in video understanding:
Modeling the evolution of human actions in video through
temporal frame ranking was first proposed in [40]. Using
a ranking loss, the approach learns a representation of an
action that successfully orders the frames in that video.
Subsequently, ranking was successfully used for end-to-end
classification [41], modeling progression to completion [42]
as well as skill development [43]. In this work, we take
inspiration from using the temporal frame ranking loss.

Ranking-based reward learning: Our work leverages
a frame ranking objective to infer well-shaped rewards.
The idea of ranking based objectives being used has been
recently explored in the context of reinforcement learning
from human feedback [17], [18], [44]–[46]. This can be used
to leverage binary comparisons, provided by a human, to
train a reward function that can be used for RL. In contrast,
our work does not need any external human comparisons or
preferences. Instead, we simply rank frames within a video
according to their temporal progression.

III. PRELIMINARIES

Consider a robot learning how to perform a task as a finite
horizon Markov decision process (MDP), M, consisting of
the tuple (S,A,P, ρ0, γ) where S is the state space, A is the
action space, P(s′|s, a) is the transition function, ρ0 is the
initial state distribution, and γ is the discount factor. In this
work, S can be high-dimensional images, but we assume
that the environment is fully observable, thereby retaining
the Markov property. This can be relaxed by either stacking
frames or leveraging history-conditioned policies [47].

Here, we want our robot to learn a policy, π∗, to com-
plete a particular task. However, the true reward function
r(s) is not available to the learning agent. Instead, we
have a set of N expert demonstration trajectories, De =
{τk}Nk=1 where each trajectory consists of a sequence, τk =
{sk0 , sk1 , . . . , skT }. Without loss of generality, we assume that
the expert dataset is drawn IID from some expert policy
πe, with corresponding state-action marginal de(s, a). Unlike
typical imitation learning settings, no actions are available.

Since the reward function is unknown, the goal is first to
infer an appropriate reward function r̂(s) from the expert
data and then use this for policy optimization as π∗ ←
argmaxπ E [

∑
t γ

tr̂(s)] similar to standard reinforcement
learning settings. Using the notation of the state-action
marginal, dπ(s, a), we can rewrite this policy optimiza-
tion objective as π∗ ← argmaxπ Edπ(s,a) [r̂(s)], where
dπ(s, a) = (1− γ)

∑∞
t=0 P (st = s, at = a|s0 ∼ ρ0(s), at ∼



π(at|st), st+1 ∼ P(·|st, at)) is the standard state-action
occupancy measure. Note that as in most IRL settings, the
process of inferring r̂(s) and learning π∗ can be interleaved.

IV. RANK2REWARD: LEARNING SHAPED REWARD
FUNCTIONS BY FRAME RANKING

We propose a simple and scalable method for reward func-
tion inference from raw video demonstrations without requir-
ing any actions. Our proposed technique, Rank2Reward as
shown in Fig. 2, can learn well-shaped reward functions that
guide exploration for challenging tasks while being resilient
to exploitation by the policy during reinforcement learning.
The key idea is to learn how to order frames temporally in
a trajectory. In doing so, we can infer whether states visited
by a policy are making progress along a trajectory, therefore
learning policies that maximize progress. We then show how
this objective in itself is prone to exploitation during policy
learning and propose a constrained policy learning objective
that prevents this exploitation. The resulting algorithm re-
sembles a weighted adversarial imitation learning, providing
well-shaped rewards for learning.

A. Learning a measure of progress by ranking

The key assumption that we make in this work is that
the provided demonstrations are optimal and that optimal
trajectories make monotonic progress towards the goal. This
suggests that the true reward for the task (which is unknown)
is positive and non-zero for all states, a common occurrence
in a huge variety of problems especially goal-reaching tasks
[48]–[50]. For most problems, we can find a valid reward
function satisfying this assumption. Formally stated:

Assumption 1. True (unknown) reward r(s, a) > ϵ, where
ϵ > 0. This suggests that value functions of optimal policies
V ∗(s) are monotonically increasing.

However, this true reward is unknown, and IRL techniques
can recover ill-shaped and hard-to-optimize rewards r̂(s).
Instead, we can leverage Assumption 1 to directly measure
whether states are making progress along a trajectory. More
specifically, we make the observation that progress along a
trajectory can be measured by simply learning a function that
can rank different image frames in a trajectory according to
their temporal ordering. To do so, we build on recent work in
preference modeling [17], [18] to learn measures of progress
by learning how to rank pairs of frames in terms of their
natural ordering. Preference modeling methods such as the
Bradley-Terry model [51] aim to learn a utility function
û(s) such that the likelihood of “preferring” a state ski over
a different state skj for some expert trajectory τk, is given by

p(ski > skj ) =
exp ûθ(s

k
i )

exp ûθ(skj )+exp ûθ(ski )
.

Framing temporal ranking as preference modeling allows
us to, without any additional human annotation, generate a
set of preference labels for trajectories in the expert dataset
De given a sampled pairs of states, (ski , s

k
j ) along the same

expert trajectory. Along τk, ski is preferred over skj if it
occurs later (i.e., i > j). According to the Bradley-Terry
model, this suggests that ski should have a higher reward than

skj (i.e., ûθ(s
k
i ) > ûθ(s

k
j )), thereby incentivizing progress

along a trajectory. This paradigm naturally lends itself to a
training objective for ûθ by simply finding parameters θ that
maximize likelihood over the preference model, resulting in
simple cross-entropy classification:

max
θ

E τk∼De

ski ,s
k
j ,∼τk

[
1i>j

[
log

exp ûθ(s
k
i )

exp ûθ(skj ) + exp ûθ(ski )

]
+

1i<j

[
log

exp ûθ(s
k
j )

exp ûθ(skj ) + exp ûθ(ski )

]]
(1)

This training objective results in learning a utility function
ûθ that is monotonically increasing along a trajectory. This
utility function can naturally be converted into a reward
function by noting that policy optimization aims to learn
policies that maximize the likelihood (and thereby log-
likelihood) of progress. By utilizing the likelihood under
the Bradley-Terry model and setting the utility of the start
of the trajectory û(s0) = 0, the likelihood that a state s
makes progress over the initial state s0 can be written as
p(s > s0) = exp ûθ(s)

exp ûθ(s0)+exp ûθ(s)
= 1

1+exp (ûθ(s0)−ûθ(s))
=

1
1+exp (−ûθ(s))

. This is essentially just a sigmoid function
applied to the learned ranking utilities û(s), appropriately
normalizing it. For the sake of notation, we denote the
likelihood of making progress pRF(s) =

1
1+exp (−ûθ(s))

.
A policy that maximizes the log-likelihood of

progress of all states can then be obtained as
maxπ Eπ [log∪ni=1p(si > s0)] = Eπ [

∑n
i=1 log pRF(si))] =

Es,a∼dπ(s,a) [log pRF(s)], where we use the state-action
marginal form of the value function. This objective is
amenable to any standard policy optimization framework
such as model-free reinforcement learning [52]–[54], with
r̂(s) = log pRF(s) as the reward. Note that since it is
monotonically increasing along optimal trajectories, pRF is a
value function-like measure rather than a sparse reward type
of measure. As discussed in prior work [48], optimizing
value function-like measures can lead to policies that both
learn quickly and have bounded suboptimality. The ranking
function ûθ(s) can be trained via Eq 1 solely from expert
trajectories, and the policy can be then optimized with r̂(s).

B. Incorporating learned rankings into policy optimization

Naively optimizing this objective naturally leads to the
policy exploiting the learned reward function in “out-of-
distribution” states. Since the reward function r̂(s) has only
been learned on states from the expert dataset, s ∼ De, it
may overestimate rewards at other states leading to arbitrarily
incorrect policies. To remedy this, we incorporate the idea
of pessimism into our reward learning framework [55]–[57]
— penalizing the policy for deviation from the training dis-
tribution. Given the expert dataset De and it’s corresponding
state marginal de(s), as well as the current policy π and it’s
state marginal dπ(s), we can formulate a pessimistic policy
optimization objective as:

max
π

Es∼dπ,a∼π(a|s) [log pRF(s)]−αDKL(d
π(s), de(s)) (2)



Fig. 2: A schematic depiction of reward inference using Rank2Reward . Given video demonstrations from a human supervisor, Rank2Reward learns a
reward function by combining two distinct elements — (1) a ranking function that temporally orders frames, providing a monotonically increasing reward
signal pRF (s). Secondly, (2) a classifier Dϕ between expert and on-policy data, so that expert data is weighted higher than on-policy data. When combined
multiplicateively, they yield a well-shaped reward function for RL that pushes down on-policy data, and pushes up expert data.

This objective aims to maximize the likelihood of progress
as defined in Sec. IV-A. However, it does so while en-
suring that the state marginal of the policy remains close
to the expert data distribution via a penalty on the diver-
gence DKL(d

π(s), de(s)) = Es∼dπ(s)

[
log dπ(s)

de(s)

]
between

the marginal densities of the policy and the expert data.
This objective is challenging to optimize since the likeli-

hoods under the expert marginal data distribution de(s) and
the policy marginal distribution dπ(s) are both unknown and
require density estimation [58]–[60]. Instead, we will show
that the objective in Eq. (2) can be recast as a weighted
adversarial imitation learning algorithm that circumvents
explicit density estimation. By substituting the definition of
the KL divergence in Eq. (2) we have the following objective:

max
π

Es,a∼dπ [log pRF(s)]− αEs∼dπ(s)

[
log

dπ(s)

de(s)

]
= Es,a∼dπ

[
log

(
pRF(s)

(
de(s)

dπ(s)

)α
)]

(3)

To estimate the density ratio de(s)
dπ(s) , we can make use of

the fact that despite the likelihoods of de(s) and dπ(s) not
being known, given samples from distributions de(s), dπ(s),
a classifier trained to distinguish between this samples can
be used to estimate a density ratio. A classifier Dϕ(s) trained
to distinguish between de(s), dπ(s) can provide us de(s)

dπ(s) =
Dϕ(s)

1−Dϕ(s)
[61]. This reduces to:

max
π

Es,a∼dπ

[
log

(
pRF(s)

(
Dϕ(s)

1−Dϕ(s)

)α
)]

(4)

This equivalence suggests a simple algorithm for optimiz-
ing Eq. (4) - alternate between (1) training a classifier Dϕ(s)
to distinguish between states drawn from the expert video
demonstrations and on-policy data collected by the policy
π using standard binary classification with cross-entropy,
and (2) perform policy optimization combining the learned
classifier Dϕ(s) together with the learned ranking function
in r̂(s) = pRF(s)

( Dϕ(s)
1−Dϕ(s)

)α
. This is similar to adversarial

imitation learning methods like GAIL [10] but weighted with
a learned ranking function pRF. This weighting is crucial,

because it provides the policy learning procedure with a
dense, shaped reward that is able to guide exploration and
encourages efficient, performant policy learning.

Algorithm 1 Rank2Reward

1: Require: Expert demonstration data De = {τk}Nk=1

2: Initialize policy π, empty replay buffer DRB
3: Initialize utility ûθ and classifier Dϕ functions for r̂(s).
4: // Train the utility ranking function ûθ

5: for step n in {1, . . . , Nranking} do
6: Sample state pairs ski , s

k
j from each trajectory, τk

7: Learn ûθ with batch {(st1 , st2)k}bsk=1 using Eq. (1)
8: end for
9: // Joint policy optimization and reward learning

10: for step n in {1, . . . , N} do
11: With π, collect transitions {τl}Ml=1 and store in DRB
12: if n%reward update frequency == 0 then
13: Sample batch of states se from expert De

14: Sample batch of states sπ from replay buffer DRB
15: Update Dϕ to classify se from sπ with BCE.
16: end if
17: Sample batch of transitions sπ from DRB
18: Update π to maximize returns using Eq. (5)
19: end for

Fig. 3: Simulation environments for evaluation in the Meta-world [6]
benchmark: (1) reach, (2) push, (3) hammer, (4) drawer open, (5) door
open, (6) door close, (7) button press, (8) assembly



Fig. 4: Real-world environments including standard tasks (reaching and
pushing), tasks where exploration is non-trivial (pushing with obstacles and
drawer opening), and tasks where state estimation is non-trivial (sweeping
and drawing). The blue arrows indicate the directions to go.

C. Practical algorithm overview

In Algorithm 1, we show how our method for learning
a reward function can be used with any off the shelf
reinforcement learning algorithm - here, off-policy learning
methods [53], [54] for data efficiency. Notably, the ranking
component pRF(s) of the reward can be learned offline solely
from expert data, independent of learning the policy, and
only the classification component Dθ(s) depends on both the
expert data and data collected by the current learned policy.
Our final simplified learned, estimated reward function is:

r̂(s) = log pRF(s) + α
(
logDϕ(s)− log(1−Dϕ(s))

)
(5)

V. EXPERIMENTAL RESULTS

In our experiments, we evaluate our proposed technique
for learning reward functions from video demonstrations
on simulated and real-world manipulation tasks. We also
experiment with scaling our approach to internet-scale in-
the-wild data from Ego4D [13]. In simulation, we leverage
a model-free RL method for learning from images, DrQv2
[53], [62], while in the real world, we leverage a data-
efficient actor-critic technique [54], [63]. All experiments use
a frozen pre-trained visual feature extractor from [64].

A. Evaluation Environments

We evaluate Rank2Reward on the following environ-
ments:

Meta-world [6]: This simulation benchmark consists of
a table-top Sawyer robot arm, as shown in Fig. 3. We
instantiate environments with random initial states and use
image-based observations. We compare our method against
baselines by measuring the average episodic return based on
the hand-defined rewards available with the benchmark.

Real-World xArm Environment: We utilize a table-
top mounted 5 DoF xArm5 manipulator. We perform end-
effector positional control, where the action space is nor-
malized delta positions, and use image-based observations.
We test Rank2Reward on 6 real-world tasks, as shown in
Fig. 4. Our more complex tasks highlight situations where
exploration is non-trivial, techniques like object tracking are
ineffective, and reward specification overall is difficult.

B. Baseline Comparisons

We compare Rank2Rewardwith the following baselines:
(1) GAIL [10] Reward function is a classifier of whether
state comes from expert demonstration trajectories. This is
similar to our method without the ranking term and is akin to
ensuring the policy state visitation distribution matches that
of the expert data. (2) AIRL [22] The reward function is

similar to GAIL above but scaled with rAIRL = log(rGAIL)−
log(1−rGAIL). (3) VICE [11] The reward function is similar
to GAIL above but instead of learning a classifier of whether
the state comes from the expert demonstration trajectories,
VICE classifies whether a state is the expert goal state.
(4) SOIL [29] Learn an inverse dynamics model and uses
the data to infer actions for the expert states and uses this
for imitation learning. (5) TCN [35] We utilize the single-
view variant of TCN to learn an embedding space and
perform feature tracking with an expert demonstration to
generate rewards. (6) ROT [65] A recent method using on
optimal transport-based trajectory matching. To compare in
a similar setting, we do not utilize the behavioral cloning
initialization and regularization components of ROT, as our
method presumes no access to expert actions. (7) Ranking
only This ablation uses only the ranking function, without
the adversarial classifier, to generate reward.

C. Simulated Experiments

To quantify performance, we examine the average episodic
return from 10 evaluation episodes averaged over 3 seeds
as shown in Fig. 5. While all methods achieve non-zero
returns, our method learns quickly and more effectively than
baselines for state-only imitation learning and reward assign-
ment. Performance on hammer, drawer open, button
press, and assembly is significantly better than base-
lines, while learning curves on reach, push, door open
show comparable or slightly better performance between our
method and AIRL [22]. Notably, TCN [35] and ROT [65]
are methods designed for learning from video whereas most
other methods focus on low dimensional states which makes
their comparisons more insightful. Our method performs
similarly or slightly better than ROT in most environments.
However, in door open and push, ROT noticeably out-
performs our method, while in the simplest domain reach,
ROT struggles to achieve high rewards. In all domains TCN
performs similarly to some baseline methods, but does not
achieve comparable performance to Rank2Reward .

D. Real-World Robotic Experiments

We evaluate Rank2Reward on real-world tasks (Sec. V-
A) and compare our performance with GAIL [10] as shown
in Table I. We use different success metrics for our evaluation
tasks — distance to goal in reaching and pushing, number of
environment steps required to learn the task for pushing with
obstacle, drawer opening, and drawing, and percent of ob-
jects not successfully swept for sweeping. Rank2Reward is
able to effectively learn behaviors across real-world robotics
domains purely from image observations and video demon-
strations. Our baselines are unable to reliably learn any of
our more complex tasks beyond reaching and pushing, while
Rank2Reward can learn in under 2 hours of real-world
interaction even for the more challenging tasks.

E. Ego4D experiments

To show that Rank2Reward is a generalizable and scal-
able paradigm, we apply our approach to the Hand & Object



Task Reaching Pushing Pushing w/
Obst

Drawer
Opening

Sweeping Drawing

Metric L2-dist L2-dist StS StS Incompletion StS
Rank2Reward (Ours) 0.31 0 4391 6079 0% 79
GAIL 0.43 1.26 FAILED FAILED 60% FAILED

TABLE I: Evaluation results of real-world training using Rank2Reward , with a comparison to GAIL [10]. For all metrics below, lower is better. L2-dist
is the L2-distance in centimeters (cm) from the goal state at the end. Steps to Success (StS) measures the number of environment steps required to
successfully learn the task. Incompletion refers to the percentage of objects that were not successfully swept off the table. We see that Rank2Reward is
able to consistently outperform objectives that do not provide shaped reward.

Fig. 5: Visualization of policy learning experiments in simulation with Rank2Reward . Our method - Rank2Reward (purple) distinctly outperforms
other methods on hammer, drawer open, button press, and assembly, while performing similarly to the best baseline with reach, and door
close and worse than the best baseline in push and door open. The plots show the episodic return from 10 evaluation episodes averaged over 3 seeds
plotted over the course of training the DrQ-v2 agent for 1.5 million steps, with higher being better.

Fig. 6: Visualization of Rank2Reward output when four random videos from Ego4D are evaluated for the true goal and a counterfactual goal that does
not correspond to the input.(Top): Reward with a counterfeit goal. The reward does not consistently increase in this setting, as expected. (Bottom): Reward
for a trajectory with a true goal image. The reward in this case is monotonically increasing, demonstrating the ability to extract well-shaped, dense rewards.

Interactions data from Ego4D [13]. From 27,000 segments
processed at 10 fps, we have 2.16 million frames. We train
with 20,000 segments, and leave the rest for evaluation. From
each clip, we utilize the last frame as the goal frame and learn
a ranking component conditioned on the goal frame.

For the discriminator, we sample a positive frame from
the same clip as the goal and a negative frame from a
different clip as the goal, and train Dϕ to classify whether a
given frame and the goal frame come from the same video.
These negative frames with goals that do not match can be



thought of as counterfactual examples. We randomly select
four segments from the evaluation set and present the output
of Rank2Rewardwhen evaluated with the true goal and
a counterfactual goal in Fig. 6. When a state is evaluated
with the true goal, reward is overall increasing whereas when
evaluated with a counterfactual goal, it is both not increasing
and has an overall lower value. Such a defined and well-
shaped reward landscape on diverse, real-world data holds
promising value in lowering the difficulty of providing expert
data to learn robotic tasks.

Fig. 7: Visualization of different components of Rank2Reward in a two-
wall 2D maze environment where state is position. (a) Demonstration data
(b) pRF(s). Note the spurious high values assigned to regions not visited by
the expert. (c) Dϕ(s), before and after policy optimization. Note the induced
down weighting of out of expert distribution data (d) Rank2Reward ,
Dϕ(s) ∗ pRF(s), before and after policy optimization.

F. Reward function analysis

We visualize the shaping of our reward function over
policy optimization in a continuous 2D two-wall maze envi-
ronment, where the agent starts at the top left and the goal is
at the bottom right. Given 20 expert demonstrations (Fig. 7a),
we visualize the fixed ranking function over the landscape
where greedily moving towards highly ranked states does not
necessarily lead to the goal (Fig. 7b). We show the evolution
of the classifier during policy optimization (Fig. 7c, top and
bottom). Initially, the classifier gives higher values to states
on the right half of the maze with some slight shaping from
states likely to be stumbled upon by random exploration.
However, over RL the classifier better distinguishes states
similar to the expert demonstrations from other states. When
combined with our ranking function which was well-shaped
but had spuriously high output for out of distribution inputs,
we see that our final reward function is both well-shaped and
well-defined across the whole state space (Fig. 7d, bottom).

VI. CONCLUSION AND LIMITATIONS

In this work, we have shown that learning how to rank
visual observations from a demonstration can be used to
infer well-shaped reward functions when paired with ideas
from pessimism. Rank2Reward is simple to use, easily
integrating into many popular off the shelf RL algorithms.
By combining how to rank with how to classify expert
demonstration data from policy-collected data, our learned
reward function is interpretable yet performant. We show
experimental results in both simulated and real-world robotic
domains showing the efficacy of this technique in robotic
manipulation settings. The key benefits of a reward inference

technique like Rank2Reward really lies in it’s simplicity
and ease of use.

Limitations and Future Work There are several lim-
itations with Rank2Reward that naturally lead to future
work. Notably, there is an embodiment shift between human
demonstration videos like those found in [13], [14] and our
robot manipulators. To make use of internet-scale data, we
must use representations that generalize across manipulators,
perhaps building on [38], [66], [67]. Secondly, the rewards
trained here are still single-task and it would be challenging
to have a different reward and agent for every task. Thirdly,
as of right now the classifier Dϕ is sensitive to changes
in the background and dynamic scenes. Incorporating pre-
trained visual representations into this process can be very
effective at ensuring generalizable, robust reward inference.
Real world deployment will require further invariant rep-
resentations during reward inference. And lastly, there are
challenges with stabilizing and using adversarial optimiza-
tion in a stable way. Future work can build on advances in
contrastive learning and large scale GAN-training to make
this process more scalable.
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